Michael Broxton (PI) CMU / NASA Ames Ross Beyer (Co-I) SETI Institute / NASA Ames Zachary Moratto (Co-I) SGT Inc / NASA Ames ## Preparing for the Flood of Mars & Lunar Data - * Data volumes from HiRISE & LROC are substantially larger than any previous mission. - * Human intensive processes need to be automated so that data can be processed efficiently. - * HiRISE at this moment has 1,353 available stereo pairs! Only tens of which have been processed. Source: B. A. Archinal, L. R. Gaddis, R. L. Kirk, T. M. Hare, and M. R. Rosiek. <u>Urgent Processing and Geodetic Control of Lunar Data</u>. Workshop on Science Associated with the Lunar Exploration Architecture, 2007. #### What we Proposed to AISR - * Mature our own existing software, Ames Stereo Pipeline, for automated 3D terrain reconstruction - * Integrate USGS's Isis into our software for access mission specific camera information. - * Add support for very high resolution cameras (e.g. HiRISE and LROC) - * Provide detailed comparisons between DEMs produced by our software and alternatives. - * Give HiRISE and LROC mission support to ensure software meets demands. #### The Ames Stereo Pipeline - * Provides foremost the ability of Stereo Processing (Image Correlation). - * Has Bundle Adjustment tools for alignment between images and large data products like ULCN. - * Finally provides Data Visualization in forms of 3D models, GeoTiffs, and Google Earth KMLs. Stereo Pipeline ISIS I/O Isis: Planetary Mission Specific Code **Image Processing** Vision Camera Workbench **VW Camera Models Bundle Adjustment Image Image Processing** Stereo Dense Stereo Correlation **FileIO** Stereo Camera Geometry Image File I/O **Block Rasterization** Cartography **DEM Generation InterestPoint Image Alignment** Georeferenced File I/O Stereo Pipeline is mostly just a collection of applications built on top of Vision Workbench and Isis. ### What's Been Happening this Last Year - * Accomplished Goals - * Added the ability to create HiRISE terrain models. - * Performed initial models with LROC. - * Releasing alpha version software. - * Added Features - * Affine sub-pixel refinement. - * Camera Bundle Adjustment. - * Large format image support. MOC-NA: "GALAXIUS FLUCTUS CHANNEL" INPUT MAP PROJECTED IMAGE SIZE: 20 MB (672 BY 4,864 PX) CTX: "NORTH TERRA MERIDIANI" INPUT MAP PROJECTED IMAGE SIZE: 682 MB (8,110 BY 21,619 PX) #### HIRISE: "NORTH TERRA MERIDIANI" INPUT CROPPED MAP PROJECTED IMAGE SIZE: 409 MB (10,000 BY 10,000 PX) HIRISE: "COLUMBIA HILLS" INPUT IMAGE SIZE: 3 GB (20,000 BY 40,000 PX) #### **HIRISE: "EAST MAREOTIS THOLUS"** INPUT MAP PROJECTED IMAGE SIZE: 807 MB (11,896 BY 17,581 PX) #### Improved Subpixel Refinement * Stereo Pipeline now includes an alternative to parabola fitting that instead uses an affine template window. * This new algorithm uses an **Expectation-Maximization** algorithm to be robust against noise. ### Included Bundle Adjustment Utilities - * Stereo Pipeline also allows for the alignment of cameras with Bundle Adjustment. - * This can be performed between cameras so their DEMs align. - * Can also be applied with ground control points for alignment with global products like ULCN2005. Data: Apollo 15 Metric Camera, rev 33 ## Implemented Tiled Rasterization * Allows for processing arbitrarily large images with fixed memory usage. * Stereo Pipeline uses multithreaded tile rasterization for complete CPU utilization HIRISE (20,000x40,000) (10000x50000) # The Ames Stereo Pipeline NASA's Open Source Automated Stereogrammetry Software Version 1.0 Alpha Available next Friday (Oct. 23rd) http://ti.arc.nasa.gov/ngt/stereopipeline/ What's Included Binary distribution for Linux 32/64 bit and OSX 32 bit. This is applied on top of pre-existing installations of Isis. ** Tools for stereo reconstruction, bundle adjustment, and data visualization. * Alternatively, source is available. #### Target Audience - * Planetary Scientists, especially from USGS, ASU, U of A. - * This is an alpha release, and is a preview of what is to come. - * We want people to explore the software and to offer constructive criticism. ### Summary of What was Achieved During Year 2 - * Added the ability to process HiRISE images for terrain models. - * Initiated work to process LROC images. - * Provided tools to perform camera alignment with Bundle Adjustment. - * Releasing the Ames Stereo Pipeline to the public as Open Source. #### Future Goals * Improve support for multi-CCD cameras. * Working with LROC and HiRISE team to incorporate our software into their pipeline. * We will publish a peer reviewed report comparing our data products against USGS's DEMs. Intelligent Systems Division NASA Ames Research Center HIRISE **Zachary Moratto Intelligent Robotics Group (IRG) NASA Ames Research Center** zachary.m.moratto@nasa.gov http://ti.arc.nasa.gov/ngt/stereopipeline/